Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chris Dockendorff, Mark
 Lautens and Alan J. Lough*

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.126$
Data-to-parameter ratio $=17.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

tert-Butyl (2-phenyl-1,2-dihydro-1-naphthyl)carbamate

In the title molecule, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$, the phenyl ring and the fused benzene ring of the naphthyl system form a dihedral angle of 64.22 (5) \AA. The cyclohexene ring is in a half-chair conformation. In the crystal structure, molecules are linked into one-dimensional chains in the b-axis direction via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}[\mathrm{N} \cdots \mathrm{O}=3.3517$ (15) \AA] hydrogen bonds.

Comment

The addition of carbon-based nucleophiles to activated alkenes represents one of the fundamental methods for the controlled construction of carbon-carbon bonds in organic synthesis. To this end, we have reported that heterobicyclic alkenes are effective substrates for metal-catalysed ringopening reactions with a variety of nucleophiles (for a review, see Lautens, Fagnou \& Hiebert, 2003). One example of such a reaction is the $\mathrm{Pd}^{\mathrm{II}}$-catalysed ring-opening addition of boronic acids to heterobicyclic alkenes (Lautens \& Dockendorff, 2003). This reaction is particularly useful for the synthesis of 1aminotetralin scaffolds via the ring-opening of azabicyclic alkenes such as (1). Here, we report the crystal structure of the title dihydronaphthalene, (2), derived from the $\mathrm{Pd}^{\mathrm{II}}$-catalysed ring-opening of the azabicycle, (1), with phenylboronic acid.

Received 28 November 2005 Accepted 29 November 2005 Online 10 December 2005

The title molecule is shown in Fig. 1. All bond lengths and angles are within the expected ranges (Allen et al., 1987). The benzene ring of the naphthalen-1-yl system ($\mathrm{C} 2-\mathrm{C} 7$) and the phenyl ring (C11-C16) form a dihedral angle of $64.22(5)^{\circ}$. In the cyclohexene ring, atoms $\mathrm{C} 2, \mathrm{C} 7, \mathrm{C} 8$ and C 9 form a plane with an r.m.s. deviation $0.023 \AA$, while atoms C 1 and C 10 are -0.225 (3) and 0.203 (3) \AA from this plane, respectively. Conformational analysis of that ring (Duax et al., 1976) shows that the conformation is a half-chair, with a local pseudotwofold axis running through the midpoints of the $\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 1-\mathrm{C} 10$ bonds.

In the crystal structure, molecules related by unit-cell translations are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form extended C4 chains (Bernstein et al., 1995) in the b-axis direction (Table 1 and Fig. 1).

Experimental

The azabicycle (1) ($5 \mathrm{~g}, 20.55 \mathrm{mmol}$), phenylboronic acid (3.76 g , 30.84 mmol), and dichlorobis(1,3-diphenylphosphinopropane)palladium(II) $(0.121 \mathrm{~g}, 0.205 \mathrm{mmol}, 0.01 \mathrm{eq}$.) were added to a 250 ml round-bottomed flask with a stir bar. The flask was sealed with a septum and evacuated/flushed with nitrogen three times. Methanol (75 ml) was added by syringe, followed by a saturated aqueous solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($5 M, 4.1 \mathrm{ml}, 1 \mathrm{eq}$.). The flask was placed in an oil bath at 333 K and heated for 1.5 h , after which time NMR analysis indicated that reaction was complete. The reaction mixture was adsorbed onto a minimum amount of silica gel and purified by flash column chromatography $\left(4^{\prime \prime} \times 6^{\prime \prime}\right.$ silica gel, eluted with $2-10 \%$ EtOAc/hexanes) (yield 98\%). X-ray quality crystals were obtained from an analogous reaction on a smaller scale. The crude reaction mixture, still as a solution in methanol, was stored in a sealed flask in a 258 K freezer for an extended period, after which time crystallization occurred.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$

$M_{r}=321.40$
Monoclinic, $C 2 / c$
$a=29.4222(10) \AA$
$b=5.4655(1) \AA$
$c=21.7842$ (7) A
$\beta=95.4570(13)^{\circ}$
$V=3487.18(18) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.224 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 12640 \\
& \quad \text { reflections } \\
& \theta=3.2-27.5^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=150(1) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.46 \times 0.22 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Nonius KappaCCD diffractometer
φ scans, and ω scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.824, T_{\text {max }}=0.991$
12640 measured reflections

Refinement

Refinement on F^{2}
3901 independent reflections
2869 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-38 \rightarrow 37$
$k=-6 \rightarrow 7$
$l=-25 \rightarrow 28$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0567 P)^{2}\right.$
$+1.1855 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXTL/
PC (Sheldrick, 2001)
Extinction coefficient: 0.0085 (13)

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.48	$3.3517(15)$	169

Symmetry code: (i) $x, y+1, z$.
H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $1.00 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.88 \AA$. They were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: COLLECT (Nonius, 2003); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2001); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Figure 1
View of (2), showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms).

Figure 2
A partial packing plot (Spek, 2003) of (2), showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19.

Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Gualiardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Duax, W. L., Weeks, C. M. \& Roher, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 271-383. New York: John Wiley.
Lautens, M. \& Dockendorff, C. (2003). Org. Lett. 5, 3695-3698.
Lautens, M., Fagnou, K. \& Hiebert, S. (2003). Acc. Chem. Res. 36, 48-58.
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1 Windows NT Version. Bruker AXS Inc., Madison, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

